Vascularization--the conduit to viable engineered tissues.

نویسندگان

  • Tamar Kaully
  • Keren Kaufman-Francis
  • Ayelet Lesman
  • Shulamit Levenberg
چکیده

Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioprinting in Vascularization Strategies

Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials,...

متن کامل

Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance.

The tremendous need for bone tissue in numerous clinical situations and the limited availability of suitable bone grafts are driving the development of tissue engineering approaches to bone repair. In order to engineer viable bone grafts, one needs to understand the mechanisms of native bone development and fracture healing, as these processes should ideally guide the selection of optimal condi...

متن کامل

Influence of Matric Potential on Survival and Activity of Genetically Engineered Ralstonia eutropha H850Lr

Although the application of biodegradative genetically engineered micro organisms (GEMs) for bioremediation is very promising, the risks of their release should be assessed before their introduction into the environment. Lux-marked Ralstonia eutropha H850Lr (formerly Alcaligenes eutrophus H850Lr) was introduced into sterile and non-sterile soil microcosms at matric potentials ?2.11, ?30, ?750, ...

متن کامل

Introduction of vasculature in engineered three-dimensional tissue

Background With recent developments in tissue engineering technology, various three-dimensional tissues can be generated now. However, as the tissue thickness increases due to three-dimensionalization, it is difficult to increase the tissue scale without introduction of blood vessels. Main text Many methods for vasculature induction have been reported recently. In this review, we introduced s...

متن کامل

Dynamic Bayesian Network Modeling of Vascularization in Engineered Tissues

In this paper, we present a dynamic Bayesian network (DBN) approach to modeling vascularization in engineered tissues. Injuries and diseases can cause significant tissue loss to the degree where the body is unable to heal itself. Tissue engineering aims to replace the lost tissue through use of stem cells and biomaterials. For tissue cells to multiply and migrate, they need to be close to blood...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part B, Reviews

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2009